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Abstract

An approximate solution is obtained for the mode III crack in full scale yielding in a power law work hardening
solid. The solution is obtained in stress space. It is based on, and is a modification of, the stress and strain potentials
for the mode III crack in an elastic solid.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The only analytic solution that has been obtained for a crack in a power law work hardening solid in
general yielding is that of Amazigo (1974, 1975). He obtained, for the mode III crack, a two part solution
in strain space for the strain potential using the Wiener–Hopf technique. No attempt was made in this pa-
per to calculate the stress or strain field from the analytical solution except very close to the crack tip. (In
Appendix A of this paper we show numerically that the two halves of the Amazigo solution, and their
derivatives, do agree at their common border, a demonstration neglected before, if some corrections are
made to the solution. Also given in this appendix are corrections to some of the values of the constant that
give the values of the J-integral in the first Amazigo paper.)

In the text below is given a more directly developed analytic solution of Amazigo�s problem (which,
according to his acknowledgment, was suggested to him by J.W. Hutchinson). The solution is an approx-
imate one but its accuracy can be increased at will by increasing the number of terms used. It is found using
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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the Amazigo approach of working in strain or stress space. This solution, as does Amazigo�s, reduces to
that of the elastic case. The reason for using stress or strain space is to take advantage of the fact that
in these spaces potential functions that give rise to stress and strain fields that satisfy the power law work
hardening constitutive law are additive. In real space they are not.

The power law constitutive law, with power exponent in the range 0 6 m 6 1, considered here is
r ¼ r0
�

�0

� �m

;
ryz

rzx
¼ �yz

�zx
: ð1Þ
Here r0 and �0 are (redundant) constants, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
zx þ r2

yz

q
, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2zx þ �2yz

q
, and rij and �ij are the stress and

strain components of antiplane strain. The solution sought is for a crack in an infinite medium of half
length a that lies on the y = 0 plane between �a 6 x 6 a. The solid is stressed at great distance from the
crack with an applied stress ryz = rA. (At great distances the strain is �yz = �A = �0 (rA/r0)

1/m.) The solution
is sought in stress (or strain) space.

In the subsections below a review is given of stress and strain spaces and the equations Amazigo derived
that the stress and strain potentials must satisfy in stress and strain space. (Amazigo considered only strain
space. However, the change required for stress space is obvious.) In the last subsection a review is presented
of the elastic case stress and strain potential solution for the mode III crack. The power law work hardening
solution of the text is based on this elastic solution.

1.1. Stress (or strain) space

To enter stress (or strain) space the following interchanges are made (Amazigo, 1974; Appendix G of
Weertman, 1996)
x $ 1x � ryz; y $ 1y � rzx;

x $ cx � �yz; y $ cy � �zx;

a $ 1A � rA; a $ cA � �A; G $ b;

h � tan�1ðy=xÞ $ / � tan�1ð1y=1xÞ ¼ tan�1ðcy=cxÞ;

r $ r; r $ c;

xr � x cos/� y sin/ $ 1r � rhz; xh � x sin/þ y cos/ $ 1h � rzr;

xr � x cos/� y sin/ $ cr � �hz; xh � x sin/þ y cos/ $ ch � �zr;
The equivalent of the Burgers vector in stress space is the shear modulus G and b, the Burgers vector, rep-
resents the shear modulus in this space. The notation is that in Weertman (1996). (In Amazigo�s paper our
cx and cy (and 1x and 1y) appear as cy and cx (and sy and sx) and our / as �/. That paper is developed in
strain space whereas ours is done in stress space.) The xr and xh cylindrical coordinate relationships here
and in the equations below are implicit in the above references. (Note, for example, that
rhz = ryzcosh � rzx sinh.)

Figs. 1 and 2 show how right side positions about a crack (indicated as a horizontal line) in real space
map into stress space. The circle represent distant points from the crack. (Strain space is obtained by replac-
ing 1x with �x and 1y with �y in Fig. 2.) A point b immediately above the crack in real space is mapped below
the stress space crack on the vertical 1y axis. A distant point 2 below the plane of the crack in real space is
mapped to the crack tip, above the plane of the stress space crack, in stress space.



(a) (b) 

Fig. 1. (a) Crack in real space. (b) Close up of crack region in real space.

(a) (b) 

Fig. 2. (a) Crack in stress space. (b) Close up of crack region in stress space.
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The equilibrium and strain compatibility equations in antiplane strain are
o1y
ox

þ o1x
oy

¼ 0;
ocx
ox

�
ocy
oy

¼ 0: ð2Þ
These equations inverted to (Amazigo, 1974; Weertman, 1996)
ox
o1y

þ oy
o1x

¼ 0;
ox
ocx

� oy
ocy

¼ 0: ð3Þ
In cylindrical coordinates these equations become
o1h
or

þ 1h
r
þ o1r
roh

¼ 0;
ocr
or

þ cr
r
� och
roh

¼ 0; ð4Þ

oxh
o1

þ xh
1
þ oxr
1o/

¼ 0;
oxr
oc

þ oxr
c

� oxh
co/

¼ 0: ð5Þ
Since o/o1 = (oc/o1)o/oc = (c/m1)o/oc and o/oc = (o1/oc)o/o1 = (m1/c)o/o1, Eq. (5) can be expressed as
1

m
oxh
oc

þ xh
c
þ oxr
co/

¼ 0; m
oxr
o1

þ oxr
1

� oxh
1o/

¼ 0: ð6Þ
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1.2. Stress and strain potentials

In real space the stress components and the strain components are given by the derivatives of the stress
and strain potentials u and v:
1x ¼
ou
ox

; 1y ¼ � ou
oy

; cx ¼
ov
oy

; cy ¼
ov
ox

; ð7Þ

1r ¼
ou
or

; 1h ¼ � ou
roh

; cr ¼
ov
roh

; ch ¼
ov
or

: ð8Þ
(v, of course, is the displacement in the z-direction.) Let u be the stress space equivalent of the stress poten-
tial of real space and v the strain space equivalent of the strain potential of real space. Eqs. (7) and (8) in
stress and in strain space become
x ¼ ou
o1x

; y ¼ � ou
o1y

; x ¼ ov
ocy

; y ¼ ov
ocx

; ð9Þ

xr ¼
ou
o1

; xh ¼ � ou
1o/

; xr ¼
ov
co/

; xh ¼
ov
oc

: ð10Þ
Eqs. (6) and (10) combine to give Amazigo�s equations (for stress space)
o
2u
o12

þ 1

m1
ou
o1

þ 1

m12
o
2u

o/2
¼ 0; ð11Þ
and (for strain space)
o2v
oc2

þ m
c
ov
oc

þ m
c2

o2v

o/2
¼ 0 ð12Þ
1.3. Elastic case solution

For the elastic case, because m = 1, the stress and strain potentials u and v have the identical form of u
and v in real space. In real space (Weertman, 2000, 2001)
u2 ¼ 1
2
12A r2 cos 2h� a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � 2r2a2 cos 2hþ a4

pn o
; ð13Þ

v2 ¼ 1
2
c2A �r2 cos 2hþ a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � 2r2a2 cos 2hþ a4

pn o
: ð14Þ
Fig. 3 shows a plot of constant (normalized) stress potential u and (normalized) strain potential v in real
space. (In this figure the solid lines of constant v are the finger trajectories across which the shear stress
is a maximum and dashed lines of constant u are the thumb trajectories across which the shear stress is
a zero.) The stress and strain fields in real space can be found from Eqs. (13) and (14). The stress and strain
fields so found are those of the mode III crack in an elastic solid (given, for example, in Chapter 1 of Weert-
man, 1996). The stress faces are traction free and the stress field at large distances from the crack reduces
to 1x = 1A, 1y = 0. Fig. 4 presents contours of constant stress magnitude in real space (see Appendix B).
In stress space (or strain space) the stress magnitude contours are half circles of varying radii centered
at the origin.

The stress and strain potentials u and v in stress and strain space for the crack in an elastic solid, from
Eqs. (13) and (14), are



Fig. 3. Dashed lines: u = constant. Solid lines: v = constant. Right side of mode III crack is shown. Normalized plot.

Fig. 4. Stress magnitude contours for mode III crack in elastic solid. Normalized plot.
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u2 ¼ 1
2
a2 12 cos 2/� 12A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14 � 21212A cos 2/þ 14A

q� �
; ð15Þ

v2 ¼ 1
2
a2 �c2 cos 2/þ c2A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 � 2c2c2A cos 2/þ c4A

q� �
: ð16Þ
The potentials u and v can be expanded in power series. For 1/1A, c/cA > 1,
u> ¼ a1A
1
1A

� �
cos/� a1A

X1
N¼0

a2Nþ1

1A
1

� �2Nþ1

cosð2N þ 1Þ/; ð17Þ

v> ¼ acA
c
cA

� �
sin/þ acA

X1
N¼0

a�2Nþ1

cA
c

� �2Nþ1

sinð2N þ 1Þ/: ð18Þ
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For 1/1A, c/cA < 1 (with + for / > 0 and � for / < 0)
u< ¼ � a1A
X1
N¼1

b2N
1
1A

� �2N

sinð2NÞ/
( )

; ð19Þ

v< ¼ �acA 1�
X1
N¼1

b�2N
c
cA

� �2N

cosð2NÞ/
( )

: ð20Þ
The superscript > is used when 1 P 1A (or c P cA) and < when 1 6 1A (or c 6 cA). In these equations
a2N�1 ¼ a�2N�1 ¼ b2N ¼ b�2N and
a1 ¼
1

2
; a3 ¼

1 � 1
2 � 4 ; a5 ¼

1 � 1 � 3
2 � 4 � 6 ; . . . ; a2Nþ1 ¼

1 � 1 � 3 � 5 � � � ð2N � 1Þ
2 � 4 � 6 � 8 � � � ð2N þ 2Þ : ð21Þ
The first three, four and more terms in these equations can be established directly by Taylor expansions of
Eqs. (14) and (15). The higher order terms in the equations for u can be verified by evaluating the integral
Z p

0

u1¼1Afsinð2NÞ/; cosð2N þ 1Þ/gd/;
where u is given by Eq. (15) and then when u is given by Eqs. (17) and (19). The terms in Eqs. (18) and (20)
can be verified in the same way. (Note that the constants are the same as those found in the series expansion
of the function

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
.)

The following relationships are found connecting a2N+1 and b2N by setting 1 = 1A, multiplying the right
sides of Eqs. (17) and (19) with the term cos(2N + 1)hdh, and integrating from 0 to p (on allowing contin-
uation of u into values of / greater than p/2):
a2Nþ1 ¼ � 4

p

X1
M¼1

b2M
ð2MÞ

ð2MÞ2 � ð2N þ 1Þ2
; ð22Þ

a1 ¼ 1� 4

p

X1
M¼1

b2M
ð2MÞ

ð2MÞ2 � 1
: ð23Þ
The inverse relationship, obtained by using sin(2N)hdh instead of cos(2N + 1)hdh, is
b2N ¼ 4

p
ð2NÞ

ð2NÞ2 � 1
� 4

p

X1
M¼0

a2Mþ1

ð2NÞ
ð2NÞ2 � ð2M þ 1Þ2

: ð24Þ
A numerical evaluation shows that the values of the constants a2N + 1 and b2N given by Eq. (21) satisfy
Eqs. (22)–(24) (as well as Eqs. (27)–(29)).

If Eqs. (17) and (19) are differentiated with respect to 1 and then integrated from 0 to / with respect to /
(where /P 0) the following equations are found:
Z /

0

1A
ou>

o1
d/ ¼ a1A

1
1A

� �
sin/þ a1A

X1
N¼0

a2Nþ1

1A
1

� �2Nþ1

sinð2N þ 1Þ/; ð25Þ

Z /

0

1A
ou<

o1
d/ ¼ a1A 1�

X1
N¼1

b2N
1
1A

� �2N

cosð2NÞ/
( )

: ð26Þ
Note that
P1

N¼1b2N ¼
P1

N¼1a2Nþ1 ¼ 1 (a result easily shown from the x! 1 limit of the expansion offfiffiffiffiffiffiffiffiffiffiffi
1� x

p
). Eqs. (25) and (26) are of the same form as the strain potentials (18) and (20). In the same way that
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Eqs. (22)–(24) are obtained from Eqs. (17) and (19) the following equations are obtained from the last two
equations:
a2Nþ1 ¼
4

p
1

ð2N þ 1Þ �
4

p

X1
M¼1

b2M
ð2N þ 1Þ

ð2N þ 1Þ2 � ð2MÞ2
; ð27Þ

a1 ¼ �1þ 4

p
� 4

p

X1
M¼1

b2M
1

1� ð2MÞ2
; ð28Þ

b2N ¼ � 4

p
1

1� ð2NÞ2
� 4

p

X1
M¼0

a2Mþ1
ð2M þ 1Þ

ð2M þ 1Þ2 � ð2NÞ2
: ð29Þ
2. Mode III crack solution in work hardening solid in stress space

When m = 1 the various terms, such as ð1A=1Þ2Nþ1 cosð2N þ 1Þ/, in Eqs. (17)–(20) obviously satisfy the
Amazigo Eqs. (11) and (12). When m 5 1 the exponents over terms such as (1/1A) must change value if
these terms are to satisfy Eqs. (11) and (12). The Amazigo equations require the exponent 2N + 1 over a
1A
1 term or a cA

c term is replaced with the exponents (Amazigo, 1974)
a1ð2Nþ1Þ ¼
1

2
� 1� 1

m

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2N þ 1Þ2

s24 35; ð30Þ

acð2Nþ1Þ ¼
1

2
�ð1� mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ 4mð2N þ 1Þ2

q� �
; ð31Þ
where the subscript 1 or c refers to the stress or strain space case. The exponent 2N over a 1
1A
term or a c

cA
term must be replaced with
a1ð2NÞ ¼
1

2
1� 1

m

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s24 35; ð32Þ

acð2NÞ ¼
1

2
ð1� mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ2 þ 4mð2NÞ2

q� �
: ð33Þ
This exponent replacement is a necessary condition but is not a sufficient condition for the attainment of
a satisfactory solution. The constants a2N+1, b2N, a�2Nþ1; b

�
2N must also be changed. Their determination is

the heart of the problem of the mode III crack in general yielding in a power law work hardening solid.
(The arguments of the sin and cosine terms (for example, changing 2Nh to 2gh where g is not an integer)
cannot be changed without violating the symmetry conditions––which are the same for the work hardening
case as for the elastic case––of the problem.)

2.1. Stress space

In stress space Eqs. (17) and (19) become (for 1 P 1A)
u> ¼ a1A
1
1A

� �
cos/� a1A

X1
N¼0

a2Nþ1

1A
1

� �a2Nþ1

cosð2N þ 1Þ/; ð34Þ
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and (for 1 6 1A)
u< ¼ � a1A
X1
N¼1

b2N
1
1A

� �a2N

sinð2NÞ/
( )

: ð35Þ
New constants a2Nþ1 and b2N have been substituted for a2N+1 and b2N. The subscript 1 has been dropped,
for simplicity, from the exponents a1(2N+1) and a1(2N) of Eqs. (30) and (32).

At 1 = 1A the potential u must be continuous (that is, u> ¼ u<). If it were not, infinitely large stresses
exist at this circular boundary. (In the elastic case it is obvious that u> ¼ u< at 1 = 1A because u> and
u< are obtained from Eq. (15) function u which is a continuous function at 1 = 1A.) Moreover, the deriv-
atives of u> and u< also must be continuous at 1 = 1A. For example, the derivative �ou=1o/ gives the stress
space analogue of traction stress 1h across the 1 = 1A boundary that separates the regions 1 6 1A and
1 P 1A. The traction stress always must be continuous across a boundary. Thus ou=o/ is continuous at
1 = 1A. (A physical argument, of course, is not needed to deduce the continuity of ou=o/. If u is continuous
at 1 = 1A, obviously, ou=o/; o

2u=o/2; o3u=o/3; . . . are continuous too at 1 = 1A, as well as the integralR /
0
ud/.)
The derivative ou=o1 gives the stress space analogue of the non-traction stress 1r across the boundary.

Physically, of course, the non-traction stress 1r can make a jump across a boundary. However, if it does
a surface screw dislocation distribution (and an analogue surface screw dislocation distribution in stress
space) must exist at the boundary (see p. 51 of Weertman, 1996). But the only surface dislocation distribu-
tion that exists for the mode III problem is the distribution that exists at the crack faces. (This distribution
does produce a jump in the non-traction stress across the crack faces.) Thus ou=o1 too must be continuous
at 1 = 1A. If both ou=o1 and ou=1o/ are continuous at 1 = 1A and if the potential u obeys the Amazigo Eq.
(11) on both sides of the boundary then, from Eq. (11), all higher derivatives o2u=o12; o3u=o13; . . . also are
continuous.

If the second order derivatives of u and u are continuous the physical meaning of this continuity is that
the areal screw dislocation densityB (or B for the stress space analogue) is continuous too. The areal screw
dislocation density in real or stress space is equal to
B ¼ 1

G
r2u; B ¼ 1

b
r2u:
To have a satisfactory solution, therefore, it is necessary and sufficient to have at the circular boundary
1 = 1A:
u> ¼ u<;
ou>

o1
¼ ou<

o1
: ð36Þ
The first of these conditions is trivial to satisfy but the second is not.
Let the o/o1 derivative be taken of Eqs. (34) and (35):
1A
ou>

o1
¼ a1A cos/þ a1A

X1
N¼0

a2Nþ1

1

2
� 1� 1

m

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2N þ 1Þ2

s24 358<:
9=; cosð2N þ 1Þ/;

ð37Þ

1A
ou<

o1
¼ � a1A

X1
N¼1

b2N
1

2
1� 1

m

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s24 358<:
9=; sinð2NÞ/

8<:
9=;: ð38Þ
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In these equations 1/1A = 1A/1 = 1. These equations can be simplified by subtracting from them Eqs. (34)
and (35) after the latter equations are multiplied by the factor 1

2
1� 1

m

� 	
. The result is
1A
ou>

o1
� 1

2
1� 1

m

� �
u> ¼ 1

2
1þ 1

m

� �
a1A cos/

þ a1A
X1
N¼0

a2Nþ1

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2N þ 1Þ2

s8<:
9=; cosð2N þ 1Þ/; ð39Þ

1A
ou<

o1
� 1

2
1� 1

m

� �
u< ¼ � a1A

X1
N¼1

b2N
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s8<:
9=; sinð2NÞ/

8<:
9=;: ð40Þ
These derivatives must be continuous too.
Let Eqs. (39) and (40) be integrated from p/2 to / P 0. This procedure has the advantage that the in-

crease produced by the differentiation by a factor of about 2N or 2N + 1 of the larger order terms is offset
by a decrease of the same factor. More important, a mathematical difficulty is eliminated. At / = 0,
ou=o1 ! 1 at a finite but vanishingly small distance ahead of the stress space crack tip and ou=o1 ! 0
at finite but vanishingly small distance behind this crack tip. (That is, the crack plane is traction free at
the crack faces but the traction stress is exceeding large just ahead of the crack tip.) The result is (on setting
1/1A = 1A/1 = 1)
X> ¼
ffiffiffiffi
m

p 1

2
1þ 1

m

� �
a1Aðsin/� 1Þ þ a1A

X1
N¼0

a2Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1�mÞ2

4mð2N þ 1Þ2

s
sinð2N þ 1Þ/� sinð2N þ 1Þp

2


 �
;

ð41Þ

X< ¼ a1A
X1
N¼1

b2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� mÞ2

4mð2NÞ2

s
fcosNp� cosð2NÞ/g; ð42Þ
where
X> �
ffiffiffiffi
m

p Z /

p=2
1A

ou>

o1
� 1

2
1� 1

m

� �
u>

� �
d/; X< �

ffiffiffiffi
m

p Z /

p=2
1A

ou<

o1
� 1

2
1� 1

m

� �
u<

� �
d/: ð43Þ
The o/o1 derivative condition of Eq. (36) condition can be replaced with the following modified o/o1
derivative condition at 1 = 1A.
X> ¼ X<: ð44Þ
2.2. Stress space solution

A solution that satisfies these equations is found in the following steps. First set u> ¼ u>0 and u< ¼ u<0
where u>0 and u<0 are given by
u>0
a1A

¼ 1
1A

� �
cos/þ ðb0 � 2Þa1

1A
1

� �a1

cos/� b0

X1
N¼1

a2Nþ1

1A
1

� �a2Nþ1

cosð2N þ 1Þ/; ð45Þ

u<0
a1A

¼ �b0

X1
N¼1

b2N
1
1A

� �a2N

sinð2NÞ/: ð46Þ
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Note that u>0 reduces to the correct limit of a1 cos/ when 1 � 1A. Here b0 is a constant to be set. The con-
stants a2N+1 and b2N are those of Eq. (21) of the elastic case. Because they are, setting u> ¼ u>0 and u< ¼ u<0
does satisfy the u> ¼ u< continuity condition at 1 = 1A. However, the modified derivative condition
X>

0 ¼ X<
0 is not satisfied (on setting u> ¼ u>0 , u< ¼ u<0 , 1 = 1A, b2N ¼ b0b2N , a2Nþ1 ¼ b0a2Nþ1, and

a1 ¼ ð2� b0Þa1, in the right-hand side of Eqs. (39)–(42)).
Instead of substituting u>0 and u<0 into Eqs. (39)–(42) substitute
u<2K ¼ a1A
1
1A

� �a2K

sin 2K/; u>2K ¼ �a1A
X1
N¼0

ea2K
2Nþ1

1A
1

� �a2Nþ1

cosð2N þ 1Þ/; ð47Þ
where K = 1, 2, 3, . . . and the constants ea2K
2Nþ1 are given by
ea2K
2Nþ1 ¼ � 4

p
ð2KÞ

ð2KÞ2 � ð2N þ 1Þ2
: ð48Þ
Eq. (47) satisfies the u> ¼ u>2K ¼ u< ¼ u<2K continuity condition. It does not satisfy the modified o/o1
derivative condition (44). The terms X>

2Kð/Þ and X<
2Kð/Þ are found by setting u> ¼ u>2K , u

< ¼ u<2K , 1 = 1A,

b2N ¼ 0 for N5K, b2N ¼ 1 for N = K, and a2Nþ1 ¼ ea2K
2Nþ1 in the right-hand side of Eqs. (39)–(42). The term

1
2
1þ 1

m

� 	
in these equations is set equal to zero because it is already accounted for with the potentials u>0 and

u<0 .
The value of the constant b0 is set by finding curves DX0 ¼ X>

0 � X<
0 versus / for different values of b0.

The value of b0 chosen is that for the curve that, apart from the scaling factor, most closely matches in form
the curve of DX2 ¼ X>

2 � X<
2 versus /. Fig. 5a and b show, for m = 1/5 and m = 1/100, curves of DX0 versus

/ for different values of b0. Also shown in these figures are the dashed curves �b2DX2 versus / where b2
values are given in Table 1 of Appendix C. The DX0 curves for b0 = 1.2184 and b0 = 2.63 most closely
match the �b2DX2 curves.

Potentials that do satisfy Eq. (44) approximately are found, using a finite number of constants
b2, b4, b6, . . . ,b2n on setting
Fig. 5. (a) DX0 versus / for m = 1/5. (b) DX0 versus / for m = 1/100.
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u> ¼ u>0 þ
Xn

N¼1

b2Nu
>
2N ; u< ¼ u<0 þ

Xn

N¼1

b2Nu
<
2N : ð49Þ
The constants a2Nþ1 and b2N are equal to (where b2N = 0 for N > n)
a2Nþ1 ¼ b0a2Nþ1 þ
Xn

K¼1

b2Kea2K
2Nþ1; b2N ¼ b0b2N þ b2N ; ð50Þ

a1 ¼ ð2� b0Þa1 þ
Xn

K¼1

b2Kea2K
1 : ð51Þ
The u> ¼ u< continuity condition at 1 = 1A remains satisfied by Eq. (49) regardless of the values of the
constants b2N. Values of the constants b2N that allow the modified o/o1 derivative condition (44) to be sat-
isfied approximately are found by setting
DX0ð/Þ þ
Xn

N¼1

b2NDX2N ð/Þ ¼ 0; ð52Þ
at n different values of the angle / and solving the resultant n independent equations for the n constants
b2N. The larger is n the more accurate the solution.

Let the number n be limited to 5. Let the angles used in Eq. (52) be 0�, 18�, 36�, 54�, 72�. In Appendix C
are listed values of b2N found from the last equation for a number of values of the power exponent m. In
Fig. 6 are plots of X> and X< versus / for three different values of m. Points plotted are calculated at 2.5�
intervals. In Appendix C is given a table that lists the values of X> and X< at different values of / for the
case of m = 1/5. The solutions of Fig. 6 and Appendix C are reasonably accurate. Fig. 7 shows a plot of
the essentially unmodified o/o1 derivative (given by Eqs. (39) and (40)) versus /. (In calculating the curves
in Figs. 5–7 summations were taken over 5 · 104 terms except at / = 0� when 106 terms were used. In Fig. 7
106 terms were used when / < 26�. Summation tricks discussed in Appendix D also were used.)
Fig. 6. X> and X< versus /.



Fig. 7. ou=o1� ð1� 1
mÞu versus /.
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3. Stress magnitude contours in real space

In stress space the real space coordinates are found as a function of 1 and / (or 1x and 1y). Thus, from
Eqs. (9) and (10),
x ¼ xr cos/þ xh sin/; y ¼ �xr sin/þ xh cos/; ð53Þ

where
xr ¼
ou
o1

; xh ¼ � ou
1o/

: ð54Þ
For the mode III crack problem u is given by Eqs. (45)–(51). Thus given a stress component the real space
coordinates associated with it can be found.

The constant stress magnitude contours in real space are easily found from these equations by fixing the
value of 1 and varying the angle / until the contour is traced out. Fig. 8a–e show stress magnitude contours
so found for m = 2/5, 1/5, 1/20, 1/40, 1/100. (The case of m = 1 is shown in Fig. 4.) These plots are nor-
malized by setting a = 1A = 1.

Fig. 9a–c shows stress magnitude contours close to the crack tip for m = 1/5 and m = 1/40. (In these
figures the origin is at the crack tip.) Fig. 9a and b have the same spatial extent. The non-concentric circles
for the m = 1/5 case are non-concentric elliptically shaped contours for the m = 1/40 case. Fig. 9c shows
that closer to the crack tip the contours for the m = 1/40 case also are non-concentric circles. (Rice
(1968) showed that in small scale yielding in a work hardening solid the stress magnitude contours close
to the crack tip are non-concentric circles.)

It is seen in Fig. 8 that the contour found for the (normalized) stress magnitude 1 which is slightly larger
than one (1.0001) almost coincides, as it should, with the contour which is slightly smaller than one
(0.9999).

The term a1ð1A=1Þa1 cos/ in the expression u> in stress space determines the asymptotic crack tip stress
field in real space. Likewise, the term a2ð1=1AÞa2 sin 2/ in the expression u< gives the asymptotic stress field
in real space at the center of the crack. (Note that a2 ¼ 1

2
b0 þ b2 and a1 ¼ 1

2
ð2� b0Þ þ

P5
K¼1b2Kea2K

1 .)



Fig. 8. (a) 1/1A contours for m = 2/5. (b) 1/1A contours for m = 1/5. (c) 1/1A contours for m = 1/20. (d) 1/1A contours for m = 1/40.
(e) 1/1A contours for m = 1/100.

Fig. 9. (a) 1/1A contours for m = 1/5. (b) 1/1A contours for m = 1/40. (c) 1/1A contours for m = 1/40.
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Fig. 10. a1 and a2 versus m.

Fig. 11. (a) ryz contours for m = 1. (b) rzx contours for m = 1.
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Fig. 10 shows a plot of a1 and a2 versus m. Table 3 of Appendix C lists values of a1 and a2 for the different
values of m plotted in Fig. 11. It can be seen that the sum a1 þ a2 is approximately equal to 1. In the limit
m! 0 it is likely that a1 ! 0 and a2 ! 1. The values of a1 and a2 are relatively insensitive to the exact value
chosen for b0. (If b0 is altered somewhat the changes in the constants b2N are such that a1 and a2 remain
almost unaltered.)
4. Stress component contours in real space

In this section normalized contour plots, in real space, are given, for m = 1, 1/5, 1/40, for the individual
stress components 1x � ryz and 1y � rzx. To find these contours from Eqs. (9), (17) and (19) it is only



Fig. 12. (a) ryz contours for m = 1/5. (b) rzx contours for m = 1/5.

Fig. 13. (a) ryz contours for m = 1/40. (b) rzx contours for m = 1/40.
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necessary to set the expression 1cos/ = 1x (or 1 sin/ = 1y) equal to a constant while varying 1 and /. Figs.
11–13 present normalized contour plots of constant ryz � 1x and constant jrzxj � j1yj. Also shown in these
plots, as long dashed curves, are the constant stress magnitude contour r = 1.0001rA � rA found for u = u>

(Eq. (17)) and the contour r = 0.9999rA � rA found for u = u< (Eq. (19)). In the plots the stress is normal-
ized by dividing by rA and the distance x and y from the crack center is normalized by dividing by the crack
half length a. Only the right side of the space around the crack is shown. The sign of ryz is positive on the
right side of the origin and negative on the left. One the right side the sign of rxz is negative above the crack
plane and positive below it.

Eq. (19) is used to find the contours in the region where r/rA � 1/1A<1 (to the left of the 1/1A = 1 con-
tour) and Eq. (17) where r/rA � 1/1A > 1 (to the right of the 1/1A = 1 contour) In the rzx contour plots a
solid line is used in the regions where 1/1A < 1 and a dashed line where 1/1A > 1. For the ryz plots a solid line
is used where 1/1A < 1. A solid line also is used where 1/1A > 1 and ryz/rA > 1. A dashed line is used in the
region where 1/1A > 1 but ryz/rA < 1. (Equation (15) was used to find contours for the elastic case of
m = 1.)
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To have a valid solution it is necessary that ryz and rzx do not change discontinuously across the con-
stant stress magnitude contour r = rA. On one side of this contour the solution is given by Eq. (17) for
u>. On the other side of the contour the solution is given by Eq. (19) for u<. The two solutions must
match at the r = rA contour (and the r � rA contours found for u = u> and u = u < must superimpose).
This match is excellent in Fig. 12a and b for the m = 1/5 case. It is not bad for the case when m has the
very small value of m = 1/40, shown in Fig. 13a and b. A better match for the m = 1/40 example can
be obtained by finding additional constants b2N beyond the six listed in Table 1 of Appendix C. The
approximate solution of the mode III crack in a power law hardening solid appears to be a reasonable
one.
5. Discussion

To have a successful solution it is necessary to show, in stress space, that the derivative ou=o1, or the
modified derivative X, is continuous at 1 = 1A. This continuity to reasonable accuracy (see Figs. 6 and 7
and Table 2) is demonstrated in the analysis of the paper. The solution, as required, does reduce to that
of the mode III crack in an elastic solid. It should be possible to repeat the analysis of the paper in strain
space to obtain an equivalent solution for the mode III crack. The success of the approximate solution of
this paper with use of the constant b0 and only the five constants b2, b4, b6, b8, b10 arises from the fortunate
circumstance that by varying the value of b0 a DX0 (modified derivative) difference curve can be found that
matches closely a scaled DX2 difference curve (see Fig. 5a and b). Without this match the method of this
paper would require use of many more b2N terms. From Fig. 5a and b, and data not shown, it is seen that
the match becomes poorer the smaller m becomes. To obtain the same accuracy found, in matching the
ou=o1 derivative at 1 = 1A, with the larger values of m obvious requires use of more than five b2N terms
when m is small.

By changing the value of b0 it is possible to improve the agreement of the ou=o1 derivative at 1 = 1A over
the entire angular range of /. But a point is reached when further improvement of the agreement over part
of the angular range of / comes at the expense of reducing the agreement over another part of the angular
range. There is a small range of values of b0 that give about equally good approximate solutions. There is
no unique value for the b0 term.

It is to be noted in Figs. 4 and 8 that the position where the constant stress magnitude crosses the y-
axis is not much altered on changing m from 1 to a small value. On the crack plane behind the crack tip
the 1/1A = 1 contour crosses the crack plane at x=a ¼ 1=

ffiffiffi
2

p
� 0:7071 when m = 1 and x/a ! 1 as m! 0.

The elliptically shaped contours for 1/1A > 1 initially become longer (and narrower) as m becomes
smaller. They then become smaller on further decrease of m and shrink into the crack tip. (A larger
stress magnitude contour may be shrinking while a smaller value contour is growing in length as m

decreases.)
It should be pointed out that the constitutive law used in the analysis requires the shear modulus be infi-

nitely large to avoid negative unloading strain on stress removal after small deformation (Amazigo, 1974).
When the shear modulus is finite the solution should be good almost everywhere except close to the center
of the crack. In this region the stress and strain are small. The constitutive equation (1) needs to be altered
in this region if the shear modulus is finite. Near the crack tip the solution breaks down because it requires
the non-redundant dislocation density qN (geometrically necessary dislocation density) be very much
greater than the redundant dislocation density qR (statistically stored dislocation density) (Weertman,
1991, 1996). No likely mechanism evidently exists in the tip region to pin non-redundant dislocations in
place. The crack tip region could be, effectively, a region almost free of non-redundant dislocations (that
is, qN is reduced to the level of qR) (Thomson, 1978; Weertman, 1978, 1996).
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Appendix A

Amazigo�s notation is used in this appendix. Note: his normalized q corresponds to our c/cA; his power
law exponent n and our exponent m are related by n = 1/m; the origin in real space is taken at the right side
crack tip, rather than at crack center. (This shift of origin causes the qsin / term to appear in the potential
for q < 1 rather than in the potential for q > 1.) When q < 1 Amazigo�s solution (1974) for the potential
Wðq;/Þ in strain space is given by
Wðq;/Þ ¼ � 2

p
N�1ðn;�1Þ
N�1ðn; 0Þ

þ q sin/þ 1

p

X1
m¼1

N�1ðn;�1Þ½1� nðbm þ 1Þ�
mð1þ bmÞN�1ðn; bmÞx0ðbmÞ

q�bm cos 2m/: ðA:1Þ
Here
bm ¼ 1

2

1

n
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
n
� 1Þ2 þ 4ð2mÞ2

n

s24 35; x0ðbmÞ ¼
2bm þ n� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmðbmnþ n� 1Þ

p ;
and
N�1ðn; sÞ ¼ 2�s
ffiffi
n

p
Q1

k¼1ðcþ2k�1 � a2k�1sÞ expða2k�1sÞQ1
k¼1ðcþ2k � a2ksÞ expða2ksÞ

; ðA:2Þ
where cþ2k�1 ¼
ffiffi
n

p

2ð2k�1Þ
1
n � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1n � 1Þ2 þ 4ð2k�1Þ2

n

q� �
, a2k�1 ¼

ffiffi
n

p

ð2k�1Þ, s ¼ sþ 1
2
ð1� 1

nÞ, a2k�1 ¼
ffiffi
n

p

ð2k�1Þ, a2k ¼
ffiffi
n

p

ð2kÞ,
etc.

When q > 1 the potential is
Wðq;/Þ ¼ 1

p

X1
m¼1

2
ffiffi
n

p
CmN�1ðn;�1Þ½1� nðCm þ 1Þ�

Q1
k¼1ðcþ2k � a2kCmÞ expða2kCmÞffiffiffi

n
p ð1þ CmÞ exp

ffiffi
n

p
Cm

ð2m�1Þ
Q1

k¼1
k 6¼m

ðcþ2k�1 � a2k�1CmÞ expða2k�1CmÞ
q�Cm sinð2m� 1Þ/;

ðA:3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq� �

where Cm ¼ 1

2
1
n � 1þ ð1n � 1Þ2 þ 4ð2m�1Þ2

n , Cm ¼ :Cm þ 1
2
ð1� 1

nÞ. The corrections have been made in the

above equations of bm ¼ 2mc�2m=
ffiffiffi
n

p
instead of bm ¼ 2mc�m=

ffiffiffi
n

p
and sin(2m � 1)/ instead of sin(2m + 1)/.

In addition, the correction factor exp½ ffiffiffi
n

p
Cm=ð2m� 1Þ�, has been added. (In Amazigo (1975) it is pointed

out that for the m = 1 coefficient of Eq. (A.3) a correction factor of exp½ðnþ 1Þ=2 ffiffiffi
n

p � is required. If, in
Eq. (38) of that paper, the term exp½ ffiffiffi

n
p

a�m=ð2nþ 1Þ� is changed to exp½ ffiffiffi
n

p
am=ð2mþ 1Þ�, then the correction

factor exp½ ffiffiffi
n

p
Cm=ð2m� 1Þ� is obtained for Eq. (A.3).)

In the elastic limit these equations reduce to
Wðq;/Þ ¼ �1þ q sin/þ 2

p

X1
m¼1

N�1ðn;�1Þ
ð2m� 1ÞN�1ðn;�2mÞ q

2m cos 2m/ ðA:4Þ
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for q < 1 and, for q > 1,
Wðq;/Þ ¼ 1

p

X1
m¼1

22m�1ð1� 2mÞN�1ðn;�1Þ
Q1

k¼1 1� 2m�1
2k

� 	
exp 2m�1

2k

� 	
ð2mÞe

Q1
k¼1
k 6¼m

1� 2m�1
2k�1

� 	
exp 2m�1

2k�1

� 	 q�ð2m�1Þ sinð2m� 1Þ/: ðA:5Þ
Here
N�1ðn; sÞ ¼ 2�s

Q1
k¼1 1� s

2k�1

� 	
exp s

2k�1

� 	Q1
k¼1 1� s

2k

� 	
exp s

2k

� 	 : ðA:6Þ
In the elastic solution of the text the coefficients of the trigonometric terms (using m for N) are
b�2m ¼ a�2mþ1 ¼

1�1�3�5���ð2m�1Þ
2�4�6�8���ð2mþ2Þ. These can be expressed as
b�2m ¼ a�2mþ1 ¼
1

2
ffiffiffi
p

p Cðmþ 1
2
Þ

Cðmþ 2Þ ¼
e
3
2CE

2
ffiffiffi
p

p 2mþ 4

2mþ 1

� �Q1
k¼1 1þ 2mþ4

2k

� 	
exp � 2mþ4

2k

� 	Q1
k¼1 1þ 2mþ1

2k

� 	
exp � 2mþ1

2k

� 	 : ðA:7Þ
Here C is the Gamma function and CE � 0.5772157 is Euler�s constant.
The trigonometric coefficients in either Eq. (A.4) or Eq. (A.5) are of quite different mathematical form

from those of Eq. (A.7). However, a numerical evaluation of the coefficients of Eqs. (A.4) and (A.5) (as well
as those of Eqs. (A.1) and (A.3) with n set to n = 1) reveals that these coefficients are identical to those of
Eqs. (21) and (A.7). (We have ignored a difference in sign of between the coefficients. The potential function
of Amazigo evidently is the negative of the one in the text as a consequence of the shift of the origin in real
space to the crack tip.)

When q = 1 the potential W(1, /), for q 6 1, found from Eq. (A.1) must equal the potential W(1, /), for
qP 1, found from Eq. (A.3). Fig. 14 shows a plot calculated from these potentials (when q = 1) as a func-
tion of / for n = 6. Also plotted in this figure is the function

R
W0 �

R /
p=2ðoW=oqÞd/. For a satisfactory solu-

tion the W curves should coincide and the �W 0 curves also should coincide. It is seen in Fig. 14 that the
curves coincide.

Amazigo represents the first summation term of Eq. (A.3) as Q(n)q�1/n sin/. From his Table 1, which
lists values of the J-integral for various values of n, the value of the first summation coefficient Q he calcu-
lated can be obtained for a number of values of n. (The coefficient Q has a negative sign.) These are listed as
jQAmazj in Table 4 of Appendix C. Also listed in this table are the values we calculated (listed as jQj) from
Fig. 14. W and �W 0 d/ versus / for n = 6.
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Eq. (A.3). Our values agree with Amazigo�s except when n P 30. (Our calculated values of his term d, listed
too in his Table 1, also disagree with his values for n P 30.) Atkinson and Champion (1985) found by
another method values of Q for n 6 5. These agree with those of Amazigo.

The first coefficient a1 of Eq. (37) of the text is related to Q by
a1 ¼
Q
n
¼ mQ: ðA:8Þ
This relationship is demonstrated in Table 3 of Appendix C. Therefore, except when n P 30, the value of
the J-integral that can be obtained from our analysis is the same that Amazigo found. When Amazigo�s
values for n P 30 are corrected they do agree.
Appendix B

A verification is made here that the inverse Cassini oval coordinate system (Moon and Spencer, 1971)
shown in Fig. 4 gives contours of constant stress magnitude for the mode III crack. (These contours
are shown in Figs. 1.13a, b of Weertman (1996) without recognition they are inverse Cassini ovals. They
are shown in Fig. 4.3-1 of Unger (1995) with this recognition, along with a different proof they are stress
magnitude contours.)

The coordinate system of Fig. 3 (in normalized units in which a = 1) is given by (Weertman, 2000)
z ¼ xþ iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðuþ ivÞ2

q
: ðB:1Þ
The finger and thumb differentials (Weertman, 2000) of the coordinate system are o/oF = Co/ou and o/

oT = Co/ov, (on noting that dF ¼ du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðox=ouÞ2 þ ðoy=ouÞ2

q
and dT ¼ dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðox=ovÞ2 þ ðoy=ovÞ2

q
) where the

metric C is given by
C2 ¼ 1

z0z0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w2Þð1þ w2Þ

p
ww

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � v2 þ 1Þ2 þ 4u2v2

q
u2 þ v2

; ðB:2Þ
and z 0 = dz/dw, z0 ¼ dz=dw. (The angle w of the tangent to a finger trajectory is given by
tanw ¼ �iðz0 � z0Þ=ðz0 þ z0Þ.) In Fig. 3 coordinate system the stress components are (when rA = 1)
rTZ � 1F ¼ 1 ¼ Cð¼ stress magnitudeÞ; rZF � 1T ¼ 0: ðB:3Þ
Along a constant stress contour of Fig. 4 C is a constant. (Note that C is not a constant along the finger or
thumb trajectories of Fig. 3 in which either u or v is held constant.) Now change to the inverse Cassini oval
coordinate system with variables s and t:
z ¼ xþ iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ exp 2q
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ exp 2ðs� itÞ
p : ðB:4Þ
Eq. (B.2) becomes
C2 ¼ 12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w2Þð1þ w2Þ

p
ww

¼ exp½�ðqþ qÞ� ¼ expð�2sÞ: ðB:5Þ
Note that C = 1 remains constant when s is held constant and t is varied. Thus the inverse Cassini oval
coordinate system gives constant stress contours.
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Appendix C

The values of the constants b0, b2, b4, . . . are listed in Table 1. See Tables 2–4.
Table 1
Beta constants

m b0 b2 b4 b6 b8 b10

1 1 0 0 0 0 0
0.8 1.0045 �0.00040359 �0.00001820 �0.00000815 �0.00000730 �0.00000360
0.4 1.0735 �0.00659825 �0.00006005 0.00002852 0.00001050 0.00000167
0.2 1.2184 �0.02308512 0.00023139 0.00044616 0.00032424 0.00014109
0.1 1.44 �0.06484964 �0.00117698 0.00031102 0.00022031 0.00008085
0.05 1.736 �0.14725855 �0.00645528 �0.00087101 �0.00052370 �0.00026977
0.025 2.055 �0.25494269 �0.01118927 0.00123175 0.00212553 0.00105995
0.01 2.63 �0.50094515 �0.04264187 �0.00480160 0.00128860 0.00114142
0.005 3.28 �0.81029898 �0.10351820 �0.02757797 �0.0194616 �0.00392626

Table 2
DX>, DX< at various / for m = 1/5

DX< DX> / DX< DX> /

�1.7921 �1.7921 0 �0.3721 �0.3719 47.25
�1.5457 �1.5460 2.25 �0.3351 �0.3350 49.5
�1.4366 �1.4366 4.5 �0.2999 �0.2998 51.75
�1.3482 �1.3479 6.75 �0.2665 �0.2665 54
�1.2699 �1.2694 9 �0.2349 �0.2350 56.25
�1.1980 �1.1975 11.25 �0.2052 �0.2053 58.5
�1.1304 �1.1300 13.5 �0.1774 �0.1775 60.75
�1.0661 �1.0659 15.75 �0.1515 �0.1516 63
�1.0045 �1.0045 18 �0.1276 �0.1277 65.25
�0.9453 �0.9455 20.25 �0.1057 �0.1058 67.5
�0.8881 �0.8884 22.5 �0.08580 �0.08583 69.75
�0.8328 �0.8332 24.75 �0.06792 �0.06792 72
�0.7794 �0.7798 27 �0.05210 �0.05207 74.25
�0.7276 �0.7279 29.25 �0.03834 �0.03830 76.5
�0.6775 �0.6777 31.5 �0.02664 �0.02662 78.75
�0.6290 �0.6291 33.75 �0.01709 �0.01705 81
�0.5821 �0.5821 36 �0.009621 �0.009659 83.25
�0.5368 �0.5367 38.25 �0.004279 �0.004265 85.5
�0.4932 �0.4930 40.5 �0.001070 �0.001066 87.75
�0.4511 �0.4509 42.75 0 0 90
�0.4108 �0.4105 45

Table 3
a1, a2 and mjQj for different m
m 1 4/5 2/5 1/5 1/10 1/20 1/40 1/100 1/200

a2 0.5 0.50185 0.51015 0.58611 0.65515 0.72074 0.77256 0.81046 0.82970
a1 0.5 0.49810 0.46886 0.41015 0.33533 0.25950 0.19195 0.12538 0.09125
mjQj 0.5 0.49809 0.46881 0.41013 0.33497 0.25840 0.19162 0.12482 0.08914



Table 4
jQAmazj and jQj for different n = 1/m

n 1 1.5 2 3 5 10 20 30 50 100

jQAmazj 0.5 0.74061 0.96380 1.3674 2.0507 3.3497 5.16814 8.5420 12.359 39.825

jQj 0.5 0.74060 0.96381 1.3674 2.0507 3.3497 5.16816 6.5312 8.6536 12.482
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Appendix D

Because summation terms containing cosine functions do not change sign at / = 0 the convergence of
the summation can be very slow. This appendix describes summation tricks at / = 0 (and 1 = 1A) used
in the evaluation of u> and X < to solve this problem. It also discusses the summation trick used to obtain
ou=o1 at small values of /.

At / = 0 (and 1 = 1A) the potential u>0 is equal to (see Eq. (45))
u>0
a1A

¼ 1þ ðb0 � 2Þa1 � b0

X1
N¼1

a2Nþ1: ðD:1Þ
Since
P1

N¼0a2Nþ1 ¼ 1 there is no need to evaluate u>0 by summation in Eqs. (45) and (D.1) at / = 0. Note
too that since ea2K

2Nþ1, given by Eq. (48), decreases as 1/(2N + 1)2 the summation for u>2K at / = 0 and 1 = 1A
converges rapidly. Thus u> easily is evaluated accurately at / = 0.

From Eq. (42) X<
0 is equal to (at / = 0 and 1 = 1A)
X<
0 ¼ a1Ab0

X1
N¼1

b2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� mÞ2

4mð2NÞ2

s
fcosNp� 1g: ðD:2Þ
The cosNp term causes no problem in the summation because it alternates in sign. The term 1 does because
it does not alternate in sign. Let
X1
N¼1

b2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� mÞ2

4mð2NÞ2

s
¼

X1
N¼1

b2N þ
X1
N¼1

b2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� mÞ2

4mð2NÞ2
� 1

s( )
: ðD:3Þ
Note that
P1

N¼0b2N ¼ 1 and, at large values of N, thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� mÞ2=4mð2NÞ2

q
� 1 � ð1� mÞ2=8mð2NÞ2. The second summation on the right-hand side of Eq.

(D.3) converges rapidly and the first summation has a known value. Thus X<
0 is easily evaluated at /

= 0. There are only five X<
2K used in the paper. Thus X< is accurately found at / = 0.

One of the summation that causes problems in evaluating ou=o1 accurately (see Eq. (39)) is
X1
N¼1

a2N
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s8<:
9=; sinð2NÞ/: ðD:4Þ
(The other troublesome summation is the one with cos(2N + 1)/ terms in Eq. (40).) At large values of N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s
¼ 2ffiffiffiffi

m
p ð2NÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

m

� �2

þ 4

m
ð2NÞ2

s
� 2ffiffiffiffi

m
p ð2NÞ

� 2ffiffiffiffi
m

p ð2NÞ þ
ffiffiffiffi
m

p

4
1� 1

m

� �2
,

ð2NÞ: ðD:5Þ
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Note that the summation
P1

N¼1b2N ð2NÞ sinð2NÞ/ can be found directly, without the need of a summation,
by differentiating u given by Eq. (15). Similarly,

P1
N¼0a2Nþ1ð2N þ 1Þ cosð2N þ 1Þ/ also is found by the same

differentiation.
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