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Abstract

An approximate solution is obtained for the mode III crack in full scale yielding in a power law work hardening
solid. The solution is obtained in stress space. It is based on, and is a modification of, the stress and strain potentials
for the mode III crack in an elastic solid.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Mode III crack; Stress—strain potentials; Stress—strain spaces; Work hardening

1. Introduction

The only analytic solution that has been obtained for a crack in a power law work hardening solid in
general yielding is that of Amazigo (1974, 1975). He obtained, for the mode III crack, a two part solution
in strain space for the strain potential using the Wiener—Hopf technique. No attempt was made in this pa-
per to calculate the stress or strain field from the analytical solution except very close to the crack tip. (In
Appendix A of this paper we show numerically that the two halves of the Amazigo solution, and their
derivatives, do agree at their common border, a demonstration neglected before, if some corrections are
made to the solution. Also given in this appendix are corrections to some of the values of the constant that
give the values of the J-integral in the first Amazigo paper.)

In the text below is given a more directly developed analytic solution of Amazigo’s problem (which,
according to his acknowledgment, was suggested to him by J.W. Hutchinson). The solution is an approx-
imate one but its accuracy can be increased at will by increasing the number of terms used. It is found using
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the Amazigo approach of working in strain or stress space. This solution, as does Amazigo’s, reduces to
that of the elastic case. The reason for using stress or strain space is to take advantage of the fact that
in these spaces potential functions that give rise to stress and strain fields that satisfy the power law work
hardening constitutive law are additive. In real space they are not.

The power law constitutive law, with power exponent in the range 0 < m < 1, considered here is

Uz%(ﬁ) C%e e (1)
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Here g and ¢ are (redundant) constants, ¢ = , /o2 +0;, € = /€2 + €, and o; and ¢; are the stress and

yz?
strain components of antiplane strain. The solution sought is for a crack in an infinite medium of half
length a that lies on the y = 0 plane between —a < x < a. The solid is stressed at great distance from the
crack with an applied stress g,. = ¢ 4. (At great distances the strainis ¢,. = €4 = ¢y (o A/ao)l/ ") The solution
is sought in stress (or strain) space.

In the subsections below a review is given of stress and strain spaces and the equations Amazigo derived
that the stress and strain potentials must satisfy in stress and strain space. (Amazigo considered only strain
space. However, the change required for stress space is obvious.) In the last subsection a review is presented
of the elastic case stress and strain potential solution for the mode III crack. The power law work hardening
solution of the text is based on this elastic solution.

1.1. Stress (or strain) space

To enter stress (or strain) space the following interchanges are made (Amazigo, 1974; Appendix G of
Weertman, 1996)

X4 G =0y, Vg, =0,
x<—>yeryZ, J"—)Vyzfzx,

a—Gg, =04, a—y,=¢, Geb

0 =tan”'(y/x) = ¢ =tan”'(,/c,) = tan”' (3,/7),

r < o, r <=7,

X, =XC0S¢p —ysin¢ < ¢, = g, Xg =x8IN¢ + ycos¢ « ¢y = 0.,
X, =XCO0Sp —ysing « ), =€, Xxg=xsin¢+ycose <« yy = e,

The equivalent of the Burgers vector in stress space is the shear modulus G and b, the Burgers vector, rep-
resents the shear modulus in this space. The notation is that in Weertman (1996). (In Amazigo’s paper our
7y and y, (and ¢, and ¢) appear as y, and y, (and 7, and 7,) and our ¢ as —¢. That paper is developed in
strain space whereas ours is done in stress space.) The x, and x4 cylindrical coordinate relationships here
and in the equations below are implicit in the above references. (Note, for example, that
0p: = 0,:C0s8) — 0.,sinb.)

Figs. 1 and 2 show how right side positions about a crack (indicated as a horizontal line) in real space
map into stress space. The circle represent distant points from the crack. (Strain space is obtained by replac-
ing ¢, with e, and ¢, with €, in Fig. 2.) A point » immediately above the crack in real space is mapped below
the stress space crack on the vertical ¢, axis. A distant point 2 below the plane of the crack in real space is
mapped to the crack tip, above the plane of the stress space crack, in stress space.
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Fig. 1. (a) Crack in real space. (b) Close up of crack region in real space.
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Fig. 2. (a) Crack in stress space. (b) Close up of crack region in stress space.
The equilibrium and strain compatibility equations in antiplane strain are
% % — ayx _ 6'Vy _ (2)
ox oy 0 ox 0y
These equations inverted to (Amazigo, 1974; Weertman, 1996)
) 5 a 0
TPy E_Y (3)
dg,  0g, Oy, 0y,
In cylindrical coordinates these equations become
9y , S0, 9, 0y v Oy
-4+ = =0, “L4+ZL-——=0 4
or r roo 6r+r rof “)
) Ox, ox, Ox, O
X0 X X - X X X0 -0 (5)

— +—+ - 07 + - -
o ¢ 0o o vy 09
Since 0/0¢ = (0y/0¢)0/dy = (y/mg)d/dy and d/dy = (0¢/dy)d/dg = (mg/y)d/d¢, Eq. (5) can be expressed as

l Oxy Xg Ox, B Ox. Ox. Oxyp (6)

=0, m—t—-——2=0
moy y  90¢ o ¢ c0¢
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1.2. Stress and strain potentials

In real space the stress components and the strain components are given by the derivatives of the stress
and strain potentials # and v:

I S T - (7)
gx_axa Sy — ayv /x_aya /y_axa
) _6u o Ou B ov . _av 8)
ST T e e VT

(v, of course, is the displacement in the z-direction.) Let z be the stress space equivalent of the stress poten-
tial of real space and ¥ the strain space equivalent of the strain potential of real space. Egs. (7) and (8) in
stress and in strain space become

o w v

X ==, = - ) X ==, =X 9
o, g, 97, ’ 07, ®)
ou ou v v
"= M= Tme YTwg Moy )
Egs. (6) and (10) combine to give Amazigo’s equations (for stress space)
ou 1 omw 1 ou
D e B ey 11
0¢z  mg¢ O¢ + me? d¢? ’ (11)
and (for strain space)
2 - 2
00 mov m O (12)

¥ e Fop
1.3. Elastic case solution

For the elastic case, because m = 1, the stress and strain potentials # and 7 have the identical form of u
and v in real space. In real space (Weertman, 2000, 2001)

u2:%gi{FZCOSZO—az—F\/7’4—2}"2612C0520—|—a4}, (13)

1)2:%yi{—r2cos20+a2+\/74—2r2a200526+a4}. (14)

Fig. 3 shows a plot of constant (normalized) stress potential # and (normalized) strain potential v in real
space. (In this figure the solid lines of constant v are the finger trajectories across which the shear stress
is a maximum and dashed lines of constant u are the thumb trajectories across which the shear stress is
a zero.) The stress and strain fields in real space can be found from Eqgs. (13) and (14). The stress and strain
fields so found are those of the mode III crack in an elastic solid (given, for example, in Chapter 1 of Weert-
man, 1996). The stress faces are traction free and the stress field at large distances from the crack reduces
to 6. =Gy, G, = 0. Fig. 4 presents contours of constant stress magnitude in real space (see Appendix B).
In stress space (or strain space) the stress magnitude contours are half circles of varying radii centered
at the origin.

The stress and strain potentials # and 7 in stress and strain space for the crack in an elastic solid, from
Egs. (13) and (14), are
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Fig. 4. Stress magnitude contours for mode III crack in elastic solid. Normalized plot.

2= %az{gz cos2¢ — ¢4 + \/€4 —2¢2¢% cos2¢ + Cj}>
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The potentials # and o can be expanded in power series. For ¢/c, y/y4> 1,

00 2N+1
U = acy <—) Ccos ¢ — acy Za2N+1 (%) COS(2N + 1)(}’7,

G4 N=0 b

. 00 . 2N+1
v =ay, (;) sin ¢ + ay, ZQENH </;) sin(2N + 1)é.
A

N=0

e

2015

(17)

(18)
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For ¢/c4, y/y4 <1 (with + for ¢ > 0 and — for ¢ <0)

o< :I:{agA i bav (> " sin(2N)¢}, (19)

SA

00 . 2N
7<= :l:ayA{l = by <yi) cos(zN)qs}. (20)
N=1 A

The superscript > is used when ¢ > ¢4 (or y = y,4) and < when ¢ < gy (or y < y4). In these equations
a)nN-1 = aszl = b2N = b;N and
1 1-1 1-1-3

a) = 5,3 = 5,45 =

1-1-35
e, a = .
2’7 T 2.4 2:4.6" VT T 004.6.8. - (2N +2)

(21)

The first three, four and more terms in these equations can be established directly by Taylor expansions of
Egs. (14) and (15). The higher order terms in the equations for # can be verified by evaluating the integral

[ e fsin @) cos(2n + 1)},
0

where % is given by Eq. (15) and then when % is given by Egs. (17) and (19). The terms in Egs. (18) and (20)
can be verified in the same way. (Note that the constants are the same as those found in the series expansion
of the function v1 — x.)

The following relationships are found connecting a,y+1 and b,y by setting ¢ = ¢4, multiplying the right
sides of Egs. (17) and (19) with the term cos(2N + 1)0d6, and integrating from 0 to « (on allowing contin-
uation of # into values of ¢ greater than n/2):

4 & b (2M)

a = — — B 22
T M oM = N + 1) @)
4 & (2M)
a=1—- by ————. 23
1 - A/[z::l 2M (2M)2 — 1 ( )
The inverse relationship, obtained by using sin(2NV)0d#0 instead of cos(2N + 1)0d6, is
4 (2N) 4 (2N) (24)

=— - = a .
a1 R N i 1 1)

A numerical evaluation shows that the values of the constants a,y + | and b,y given by Eq. (21) satisfy
Eqgs. (22)—(24) (as well as Egs. (27)—(29)).

If Egs. (17) and (19) are differentiated with respect to g and then integrated from 0 to ¢ with respect to ¢
(where ¢ > 0) the following equations are found:

¢ o ¢ . S < 2N+1 '
[ e a0 = ae, (—) sing+ac, > o (—) Sin(2N + 19, (25)
o 0 S = c

[ 77< 00 2N
/ , agﬂ d¢ = ac, {1 — Zng <P£> cos(2N)¢}. (26)
0 S N=1 SA

Note that > v boy = D> v jav+1 = 1 (a result easily shown from the x — I limit of the expansion of
V1 —x). Egs. (25) and (26) are of the same form as the strain potentials (18) and (20). In the same way that
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Egs. (22)—(24) are obtained from Egs. (17) and (19) the following equations are obtained from the last two
equations:

4 1 4 & 2N +1
AIN+1 :Ei_E ZbZM( ( ) (27)

CN+1) mi= 7 2N +1)7 — 2m)>
4 4 & 1
a :_1+,_,E by ——, 28
1 p TCM:1 ZMl_(zM)Z ( )
4 1 4 & 2M +1
b2N**_—*—E Aopr+1 ( ) (29)

2. Mode III crack solution in work hardening solid in stress space

When m = 1 the various terms, such as (¢,/c)”" "' cos(2N + 1)¢, in Eqgs. (17)~(20) obviously satisfy the
Amazigo Egs. (11) and (12). When m # 1 the exponents over terms such as (¢/c4) must change value if
these terms are to satisfy Eqgs. (11) and (12). The Amazigo equations require the exponent 2N + 1 over a
—1 term or a % term is replaced with the exponents (Amazigo, 1974)

Mwm:l——lfl—% 1712+1QN+U2 (30)
: 2 m m m ’

v =3 [~ =m) (1= - amav 17, (1)

2

where the subscript g or y refers to the stress or strain space case. The exponent 2N over a —A term or a LA
term must be replaced with

- (1%>+¢(1;>13<2N>2 | )

oy = % {(1 —m) (L= m) 4m(2N)2} . (33)

This exponent replacement is a necessary condition but is not a sufficient condition for the attainment of
a satisfactory solution. The constants a,n-+1, bay, @5y, b5y must also be changed. Their determination is
the heart of the problem of the mode III crack in general yielding in a power law work hardening solid.
(The arguments of the sin and cosine terms (for example, changing 2/N0 to 250 where 7 is not an integer)
cannot be changed without violating the symmetry conditions—which are the same for the work hardening
case as for the elastic case—of the problem.)

2.1. Stress space

In stress space Egs. (17) and (19) become (for ¢ > ¢ )

~ o OON+1
U = ag, <f) cos ¢ — agy, ZEWH (CA> cos(2N + 1), (34)
54 N=0 c



2018 J. Weertman | International Journal of Solids and Structures 42 (2005) 2011-2032
and (for ¢ < cy)

~

< = i{agA EOO:EQN (}) m sin(2N)q’>}. (35)
N=1

SA

New constants @y and b,y have been substituted for a,y.; and b,y. The subscript ¢ has been dropped,
for simplicity, from the exponents o >n+1) and agon) of Egs. (30) and (32).

At ¢ = ¢, the potential # must be continuous (that is, z~ = u#~). If it were not, infinitely large stresses
exist at this circular boundary. (In the elastic case it is obvious that = = u~ at ¢ = ¢4 because #~ and
u< are obtained from Eq. (15) function # which is a continuous function at ¢ = ¢4.) Moreover, the deriv-
atives of 7~ and u* also must be continuous at ¢ = ¢ 4. For example, the derivative —0u/cO¢ gives the stress
space analogue of traction stress ¢y across the ¢ =G, boundary that separates the regions ¢ < g4 and
¢ = Gy4. The traction stress always must be continuous across a boundary. Thus 0u/0¢ is continuous at
¢ = ¢4. (A physical argument, of course, is not needed to deduce the continuity of 0u/0¢. If u is continuous
at ¢ = ¢4, obviously, 37/0¢,0%/0¢*, 0°u/d¢p°,. .. are continuous too at ¢ =c,, as well as the integral
[Pudg.)

The derivative 0u/0c gives the stress space analogue of the non-traction stress ¢, across the boundary.
Physically, of course, the non-traction stress ¢, can make a jump across a boundary. However, if it does
a surface screw dislocation distribution (and an analogue surface screw dislocation distribution in stress
space) must exist at the boundary (see p. 51 of Weertman, 1996). But the only surface dislocation distribu-
tion that exists for the mode III problem is the distribution that exists at the crack faces. (This distribution
does produce a jump in the non-traction stress across the crack faces.) Thus 0u/0¢ too must be continuous
at ¢ = ¢ 4. If both 0u/0¢ and 0u/c0¢ are continuous at ¢ = ¢, and if the potential # obeys the Amazigo Eq.
(11) on both sides of the boundary then, from Eq. (11), all higher derivatives Gzﬁ/agz, 63ﬁ/ dc3,... also are
continuous.

If the second order derivatives of u and u are continuous the physical meaning of this continuity is that
the areal screw dislocation density # (or 4 for the stress space analogue) is continuous too. The areal screw
dislocation density in real or stress space is equal to

I — 1o,
.@—EVL{, %—qu.

To have a satisfactory solution, therefore, it is necessary and sufficient to have at the circular boundary
G =G4

ouw ous
Z> =< _ . 36
U (36)
The first of these conditions is trivial to satisfy but the second is not.
Let the 0/0c derivative be taken of Eqgs. (34) and (35):
0w > 1 1 1\* 4
gAaig = ag, cos ¢ + ag, ;EZNH 3 <1 - m) + \/(1 - m) JF%(zNJF 1)*| 3 cos(2N + 1)¢),

(37)

ou~ > 1 1 S S (N
Cyq ag == GSANEZ:I N 5 (1—%>+\/(1—Z> +Z(2N) SIH(ZN)d) . (38)
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In these equations ¢/c4 = ¢4/c = 1. These equations can be simpliﬁed by subtracting from them Egs. (34)
and (35) after the latter equations are multiplied by the factor 1 (1 — —) The result is

w1 1 1 1
e O I F2 1 p
G4 o 2( m)u 2( + )aSAcosqb

> 1 1\’ 4
+agAN§:O:52N+1 5\/(1—%> +;(2N+1)2 cos(2N + 1)¢, (39)
ous 1 1 N | 1\N? 4 5
ci——=(1==)u" =+ ag Af(1==) +=¢2 in(2 . 4
e G A T M( u) eV psinaN)g (40)

These derivatives must be continuous too.

Let Egs. (39) and (40) be integrated from n/2 to ¢ = 0. This procedure has the advantage that the in-
crease produced by the differentiation by a factor of about 2N or 2N + 1 of the larger order terms is offset
by a decrease of the same factor. More important, a mathematical difficulty is eliminated. At ¢ =0,
0u/0c — oo at a finite but vanishingly small distance ahead of the stress space crack tip and 0u/0¢ — 0
at finite but vanishingly small distance behind this crack tip. (That is, the crack plane is traction free at
the crack faces but the traction stress is exceeding large just ahead of the crack tip.) The result is (on setting

¢/ca=calc=1)

y 1 1 x, (1—m) /. . T
Q :\/ﬁi (l+m)agA(sm¢— 1) ZaZNH me(ZN—F1)(]5—sm(2N+1)§>7
(41)
Q% =ag, iz 1+ {coan—cos 2N)¢}, (42)
where

(R Py B S

The 9/d¢ derivative condition of Eq. (36) condition can be replaced with the following modified 9/d¢
derivative condition at ¢ = ¢ .

@ =0 (44)

2.2. Stress space solution

A solution that satisfies these equations is found in the following steps. First set #~ = u; and @~ = u;

s e .
where #%; and #; are given by

— - o o ~ O\ 2N+l

% _ (—) cos §+ (B — 2y (g—) cosd— oS anes (—) cos(2N + 1)¢, (45)
agy Ca G N=1 ¢

ﬁg o0 ; AN

L =48, by( =) sin(2N)¢ (46)
acy N=1 c4



2020 J. Weertman | International Journal of Solids and Structures 42 (2005) 2011-2032

Note that #; reduces to the correct limit of accos ¢ when ¢ > ¢ 4. Here f is a constant to be set. The con-
stants a, 1 and b,y are those of Eq. (21) of the elastic case. Because they are, setting 7~ = #; and u< = u;
does satisfy the u~ = u~ continuity condition at ¢=c¢,. However, the modified derivative condition
Q; = Qy is not satisfied (on setting w” =1u;, U~ =1u;, G=0C4 by = Bobw, Gavs1 = Poaoni1, and
a; = (2 — fy)a, in the right-hand side of Egs. (39)—(42)).

Instead of substituting #; and % into Eqgs. (39)—(42) substitute

~\ %2k o) O2N+1
5, = ac, <gi) sin2K¢, W =—ac, Y doy, (%) cos(2N + 1), (47)
4 N=0
where K=1,2,3, ... and the constants @y, are given by
~ 4 (2K)
a§§+1 - (48)

T (2K): — (2N + 1)*

Eq. (47) satisfies the w~ = u5, = u~ =, continuity condition. It does not satisfy the modified 0/dg
derivative condition (44). The terms Q5 (¢) and Q3 (¢$) are found by setting u~ = w5y, U~ = U5y, G = Gu,

by = 0 for N#K, byy = 1 for N= K, and @, = day,, in the right-hand side of Egs. (39)-(42). The term
% (1 + %) in these equations is set equal to zero because it is already accounted for with the potentials #; and
[N

The value of the constant f, is set by finding curves AQ, = Q; — Q; versus ¢ for different values of f.
The value of ff, chosen is that for the curve that, apart from the scaling factor, most closely matches in form
the curve of AQ, = Q7 — Q5 versus ¢. Fig. 5a and b show, for m = 1/5 and m = 1/100, curves of AQ, versus
¢ for different values of fy. Also shown in these figures are the dashed curves —f,AQ, versus ¢ where £,
values are given in Table 1 of Appendix C. The AQ, curves for o =1.2184 and Sy = 2.63 most closely
match the —f5,AQ, curves.

Potentials that do satisfy Eq. (44) approximately are found, using a finite number of constants
B2, Ba, Pes - - - P2, ON setting

@) 0 (b) ¢
Fig. 5. (a) AQ, versus ¢ for m =1/5. (b) AQ, versus ¢ for m = 1/100.
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W=+ Py, W =T+ Polly (49)
N=1 N=1
The constants @y, and b,y are equal to (where S,y = 0 for N > n)
@1 = Podav+1 + Z Pacon1s  bav = Bobay + Bovs (50)
K=1
@ =(2-Po)ar+)_ Puar. (51)
K=1

The #~ = u* continuity condition at ¢ = ¢, remains satisfied by Eq. (49) regardless of the values of the
constants f,y. Values of the constants f8,y that allow the modified d/0¢ derivative condition (44) to be sat-
isfied approximately are found by setting

AQu(9) + 3" BoAax(6) =0, (52)

at n different values of the angle ¢ and solving the resultant » independent equations for the n constants
pan- The larger is n the more accurate the solution.

Let the number # be limited to 5. Let the angles used in Eq. (52) be 0°, 18°, 36°, 54°, 72°. In Appendix C
are listed values of f, found from the last equation for a number of values of the power exponent m. In
Fig. 6 are plots of @ and Q" versus ¢ for three different values of m. Points plotted are calculated at 2.5°
intervals. In Appendix C is given a table that lists the values of Q~ and Q" at different values of ¢ for the
case of m = 1/5. The solutions of Fig. 6 and Appendix C are reasonably accurate. Fig. 7 shows a plot of
the essentially unmodified 0/0¢ derivative (given by Eqgs. (39) and (40)) versus ¢. (In calculating the curves
in Figs. 5-7 summations were taken over 5 x 10* terms except at ¢ = 0° when 10° terms were used. In Fig. 7
10° terms were used when ¢ < 26°. Summation tricks discussed in Appendix D also were used.)

V
a
/é; % ,2"* xfor ¢ =g, (¥)
20 Horc=c, (@9
X
4x
b
-3|0 T I T I T I T I 1
0 20 40 60 80

Fig. 6. Q and Q" versus ¢.
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8.0
*
1 m=0.2
6.0 —
2 %
= i Xforg=c',
\T X +forg=¢ s
N 4.0 — *x
| x";g,(
§ i
Q
20 \&&iﬁ\‘
*&%
T ¥
!G%*
0 0 T [ T I T I T I )E*
0 20 40 60 80

Fig. 7. 0u/0¢ — (1 — Lyu versus ¢.

3. Stress magnitude contours in real space

In stress space the real space coordinates are found as a function of ¢ and ¢ (or ¢, and ¢,). Thus, from
Egs. (9) and (10),

X =X,C08¢p +xp8in¢p, y = —x,.sin ¢ + xyCcos @, (53)
where
ou ou
= =— . 54
YT T T o6 (54)

For the mode III crack problem # is given by Eqs. (45)—(51). Thus given a stress component the real space
coordinates associated with it can be found.

The constant stress magnitude contours in real space are easily found from these equations by fixing the
value of ¢ and varying the angle ¢ until the contour is traced out. Fig. 8a—e show stress magnitude contours
so found for m = 2/5, 1/5, 1/20, 1/40, 1/100. (The case of m =1 is shown in Fig. 4.) These plots are nor-
malized by setting a =g, =1.

Fig. 9a—c shows stress magnitude contours close to the crack tip for m = 1/5 and m = 1/40. (In these
figures the origin is at the crack tip.) Fig. 9a and b have the same spatial extent. The non-concentric circles
for the m = 1/5 case are non-concentric elliptically shaped contours for the m = 1/40 case. Fig. 9¢c shows
that closer to the crack tip the contours for the m = 1/40 case also are non-concentric circles. (Rice
(1968) showed that in small scale yielding in a work hardening solid the stress magnitude contours close
to the crack tip are non-concentric circles.)

It is seen in Fig. § that the contour found for the (normalized) stress magnitude ¢ which is slightly larger
than one (1.0001) almost coincides, as it should, with the contour which is slightly smaller than one
(0.9999).

The term @, (c,/c)™ cos ¢ in the expression %~ in stress space determines the asymptotic crack tip stress
field in real space. Likewise, the term @,(¢/¢,)™ sin 2¢) in the expression u~ gives the asymptotic stress field

in real space at the center of the crack. (Note that @ =1f,+ f, and a; =1(2 - f,) + 215(:1[32,(5?(.)
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Fig. 8. (a) ¢/c, contours for m = 2/5. (b) ¢/c4 contours for m = 1/5. (¢) ¢/c4 contours for m = 1/20. (d) ¢/c4 contours for m = 1/40.
(e) ¢/c4 contours for m = 1/100.
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Fig. 9. (a) ¢/c4 contours for m = 1/5. (b) ¢/c4 contours for m = 1/40. (¢) ¢/c, contours for m = 1/40.
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Fig. 10. @, and a, versus m.
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Fig. 11. (a) g, contours for m = 1. (b) o., contours for m = 1.

Fig. 10 shows a plot of @; and @, versus m. Table 3 of Appendix C lists values of @; and @, for the different
values of m plotted in Fig. 11. It can be seen that the sum @, + @, is approximately equal to 1. In the limit
m — 0 it is likely that @, — 0 and @, — 1. The values of @, and @, are relatively insensitive to the exact value
chosen for fy. (If ffy is altered somewhat the changes in the constants f,5 are such that @, and @, remain
almost unaltered.)

4. Stress component contours in real space

In this section normalized contour plots, in real space, are given, for m = 1, 1/5, 1/40, for the individual
stress components ¢, = g, and ¢, = o.,. To find these contours from Eqgs. (9), (17) and (19) it is only
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Fig. 13. (a) g,. contours for m = 1/40. (b) ¢, contours for m = 1/40.

necessary to set the expression gcos ¢ = ¢, (or gsin¢ = gy) equal to a constant while varying ¢ and ¢. Figs.
11-13 present normalized contour plots of constant ¢,. = ¢, and constant |o.,| = |g,|. Also shown in these
plots, as long dashed curves, are the constant stress magnitude contour ¢ = 1.00016 4 ~ ¢ 4 found for u = u~
(Eq. (17)) and the contour ¢ = 0.9999¢ 4 ~ ¢, found for u = u~ (Eq. (19)). In the plots the stress is normal-
ized by dividing by ¢4 and the distance x and y from the crack center is normalized by dividing by the crack
half length a. Only the right side of the space around the crack is shown. The sign of ¢,. is positive on the
right side of the origin and negative on the left. One the right side the sign of ¢ is negative above the crack
plane and positive below it.

Eq. (19) is used to find the contours in the region where /o 4 = ¢/c4<1 (to the left of the ¢/c, =1 con-
tour) and Eq. (17) where o/04 = ¢/c4 > 1 (to the right of the ¢/c, = 1 contour) In the o., contour plots a
solid line is used in the regions where ¢/c4 < 1 and a dashed line where ¢/g4 > 1. For the 0,. plots a solid line
is used where ¢/g4 < 1. A solid line also is used where ¢/g, > 1 and g,./04 > 1. A dashed line is used in the
region where ¢/g4>1 but 0,./6, <1. (Equation (15) was used to find contours for the elastic case of
m=1.)
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To have a valid solution it is necessary that o). and o, do not change discontinuously across the con-
stant stress magnitude contour ¢ = g4. On one side of this contour the solution is given by Eq. (17) for
7. On the other side of the contour the solution is given by Eq. (19) for u<. The two solutions must
match at the ¢ = ¢4 contour (and the ¢ ~ ¢, contours found for u=u and u =u ~ must superimpose).
This match is excellent in Fig. 12a and b for the m = 1/5 case. It is not bad for the case when m has the
very small value of m = 1/40, shown in Fig. 13a and b. A better match for the m = 1/40 example can
be obtained by finding additional constants f§,5 beyond the six listed in Table 1 of Appendix C. The
approximate solution of the mode III crack in a power law hardening solid appears to be a reasonable
one.

5. Discussion

To have a successful solution it is necessary to show, in stress space, that the derivative 0u/0g, or the
modified derivative Q, is continuous at ¢ = ¢,4. This continuity to reasonable accuracy (see Figs. 6 and 7
and Table 2) is demonstrated in the analysis of the paper. The solution, as required, does reduce to that
of the mode III crack in an elastic solid. It should be possible to repeat the analysis of the paper in strain
space to obtain an equivalent solution for the mode III crack. The success of the approximate solution of
this paper with use of the constant iy and only the five constants f3,, f4, fs, f3, P10 arises from the fortunate
circumstance that by varying the value of iy a AQ, (modified derivative) difference curve can be found that
matches closely a scaled AQ, difference curve (see Fig. 5a and b). Without this match the method of this
paper would require use of many more f3, terms. From Fig. 5a and b, and data not shown, it is seen that
the match becomes poorer the smaller m becomes. To obtain the same accuracy found, in matching the
0u/0c derivative at ¢ = g4, with the larger values of m obvious requires use of more than five i, terms
when m is small.

By changing the value of f3 it is possible to improve the agreement of the 0u/0¢ derivative at ¢ = g4 over
the entire angular range of ¢. But a point is reached when further improvement of the agreement over part
of the angular range of ¢ comes at the expense of reducing the agreement over another part of the angular
range. There is a small range of values of f§; that give about equally good approximate solutions. There is
no unique value for the f, term.

It is to be noted in Figs. 4 and 8 that the position where the constant stress magnitude crosses the y-
axis is not much altered on changing m from 1 to a small value. On the crack plane behind the crack tip
the ¢/c4 =1 contour crosses the crack plane at x/a = 1/\/5 ~ 0.7071 when m =1 and x/a — 1 as m — 0.
The elliptically shaped contours for ¢/c,>1 initially become longer (and narrower) as m becomes
smaller. They then become smaller on further decrease of m and shrink into the crack tip. (A larger
stress magnitude contour may be shrinking while a smaller value contour is growing in length as m
decreases.)

It should be pointed out that the constitutive law used in the analysis requires the shear modulus be infi-
nitely large to avoid negative unloading strain on stress removal after small deformation (Amazigo, 1974).
When the shear modulus is finite the solution should be good almost everywhere except close to the center
of the crack. In this region the stress and strain are small. The constitutive equation (1) needs to be altered
in this region if the shear modulus is finite. Near the crack tip the solution breaks down because it requires
the non-redundant dislocation density py (geometrically necessary dislocation density) be very much
greater than the redundant dislocation density pr (statistically stored dislocation density) (Weertman,
1991, 1996). No likely mechanism evidently exists in the tip region to pin non-redundant dislocations in
place. The crack tip region could be, effectively, a region almost free of non-redundant dislocations (that
is, px is reduced to the level of pr) (Thomson, 1978; Weertman, 1978, 1996).
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Appendix A

Amazigo’s notation is used in this appendix. Note: his normalized p corresponds to our y/y4; his power
law exponent 7 and our exponent m are related by n = 1/m; the origin in real space is taken at the right side
crack tip, rather than at crack center. (This shift of origin causes the psin ¢ term to appear in the potential
for p <1 rather than in the potential for p > 1.) When p <1 Amazigo’s solution (1974) for the potential
P(p, ¢) in strain space is given by

2N_i(n,—1) N_y(n,—1)[1 = n(by +1)]

l o0
o d) == N oy TPty I cos 2me. Al
(p, ¢) © N (n0) +psmd)+n;m(l+bm)N,1(n,bm)w’(bm)p cos 2me (A.1)
Here
2
bmzl 1—1—\/(1—1)2+4(2m) , o (by) = 2by +n—1 7
k n n 2/ (b £ 1 — 1)
and
N_i(n,s)=2" s\/_Hk 1 (721 — aok-15) exp(az-13) (A2)

[1:21 (73 — aws) exp(axs)

{1 2, 402k—1) - 0 i
where 73, | :—2(2\1{:1) {%— 1+4/(E-1) 4 2l . )], Ay = (2,261), S=s+3(1-1), ay = %, Aoy :(2—‘/,;),
etc.

When p > 1 the potential is

Ensin(2m — 1)¢,

_Ls 2Ny (n, —1)]1 —n< + DI (5 — aCo) exp(exC)
sl /n(l+C, )exp 2m ) Hk 1(/2k , — an1Cy) exp(azy_1C,)

(A.3)
where C,, =1 1 —14+4/(2 - 1)° —1—4(2’"—1 Cy =.C,, +3(1 —1). The corrections have been made in the

above equations of b,, = 2my,, /\/n instead of b,, = 2my, //n and sin(2m — 1)¢ instead of sin(2m + 1)¢.
In addition, the correction factor exp[y/nC,/(2m — 1)], has been added. (In Amazigo (1975) it is pointed
out that for the m =1 coeficient of Eq. (A.3) a correction factor of exp[(n + 1)/2+/n] is required. If, in
Eq. (38) of that paper, the term exp[y/na;, /(2n + 1)] is changed to exp[v/nd,/(2m + 1)], then the correction
factor exp[/nC,,/(2m — 1)] is obtained for Eq. (A.3).)

In the elastic limit these equations reduce to

. 2 & N_i(n,—1)
¥lp,¢) = ~1+psing+— > (2m — 1)N_,(n, —2m)

m=1

p>" cos 2me (A4)
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for p <1 and, for p > 1,

¥(o.6) =1 > - (2M)>enk( G EH_)Q:; L ?)exp B v ginam—1)s. (A5)
Here
N i(ns) =2 H;C:I( = 1) €Xp (2/:—1) _ (A.6)

T (1 =50 exp (37)

In the elastic solution of the text the coefficients of the trigonometric terms (using m for N) are

b, = ay,., = % These can be expressed as
= St = e Tm + 2) 2\/_ 2m + 1 szl( + 22t1) exp (— 22t) '

Here I' is the Gamma function and Cg~ 0.5772157 is Euler’s constant.

The trigonometric coefficients in either Eq. (A.4) or Eq. (A.5) are of quite different mathematical form
from those of Eq. (A.7). However, a numerical evaluation of the coefficients of Egs. (A.4) and (A.5) (as well
as those of Eqgs. (A.1) and (A.3) with n set to n = 1) reveals that these coefficients are identical to those of
Egs. (21) and (A.7). (We have ignored a difference in sign of between the coefficients. The potential function
of Amazigo evidently is the negative of the one in the text as a consequence of the shift of the origin in real
space to the crack tip.)

When p =1 the potential ¥(1, ¢), for p < 1, found from Eq. (A.1) must equal the potential ¥(1, ¢), for
p = 1, found from Eq. (A.3). Fig. 14 shows a plot calculated from these potentials (when p = 1) as a func-
tion of ¢ for n = 6. Also plotted in this figure is the function [ ¥’ = f ,(0¥/0p)d¢. For a satisfactory solu-
tion the ¥ curves should coincide and the [¥’ curves also should 001n01de It is seen in Fig. 14 that the
curves coincide.

Amazigo represents the first summation term of Eq. (A.3) as Q(n)pfl/ "sin ¢. From his Table 1, which
lists values of the J-integral for various values of n, the value of the first summation coefficient Q he calcu-
lated can be obtained for a number of values of n. (The coefficient Q has a negative sign.) These are listed as
|OAmaz| in Table 4 of Appendix C. Also listed in this table are the values we calculated (listed as |Q]) from

—0.0

—-0.5

T -1.0
0 10 20 30 40 50 60 70 80 90

angle

Fig. 14. ¥ and [¥'d¢ versus ¢ for n = 6.
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Eq. (A.3). Our values agree with Amazigo’s except when n > 30. (Our calculated values of his term 9, listed
too in his Table 1, also disagree with his values for n > 30.) Atkinson and Champion (1985) found by
another method values of Q for n < 5. These agree with those of Amazigo.

The first coefficient @, of Eq. (37) of the text is related to Q by

This relationship is demonstrated in Table 3 of Appendix C. Therefore, except when n > 30, the value of
the J-integral that can be obtained from our analysis is the same that Amazigo found. When Amazigo’s

values for n > 30 are corrected they do agree.

Appendix B

A verification is made here that the inverse Cassini oval coordinate system (Moon and Spencer, 1971)
shown in Fig. 4 gives contours of constant stress magnitude for the mode III crack. (These contours
are shown in Figs. 1.13a, b of Weertman (1996) without recognition they are inverse Cassini ovals. They
are shown in Fig. 4.3-1 of Unger (1995) with this recognition, along with a different proof they are stress
magnitude contours.)

The coordinate system of Fig. 3 (in normalized units in which ¢ = 1) is given by (Weertman, 2000)

z=x+iy=VI1+w = /1 + (u+iv). (B.1)

The finger and thumb differentials (Weertman, 2000) of the coordinate system are 0/0F = I'd/0u and 0/

0T = I'd/dv, (on noting that 3F = 6u\/(6x/6u)2 + (dy/0u)* and 8T = 60\/(6x/av)2 + (dy/0v)’) where the
metric I" is given by

1 Va 2 — 24+ 1) + du2e?
- _ +w?)(1+7) \/ (B.2)

z'7 u? + 2 ’

and z'=dz/dw, Z =dz/dw. (The angle  of the tangent to a finger trajectory is given by
tany = —i(Z —Z)/(Z +7).) In Fig. 3 coordinate system the stress components are (when g4 = 1)

01z = ¢p = ¢ = I'(= stress magnitude), oz =¢;, =0. (B.3)

Along a constant stress contour of Fig. 4 I" is a constant. (Note that I" is not a constant along the finger or
thumb trajectories of Fig. 3 in which either « or v is held constant.) Now change to the inverse Cassini oval
coordinate system with variables s and ¢:

. 1
z=x+iy=+vV1+w?= . (B.4)

V1 +exp2q V1 +exp2(s — it)

Eq. (B.2) becomes

r =g = VW) oo (g 7)) = exp(-29) (B.5)

Note that I' = ¢ remains constant when s is held constant and ¢ is varied. Thus the inverse Cassini oval
coordinate system gives constant stress contours.
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The values of the constants f3y, 52, f4, - -
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. are listed in Table 1. See Tables 2-4.

Table 1

Beta constants

m Bo B2 Ba Bs Bs Bio

1 1 0 0 0 0 0

0.8 1.0045 —0.00040359 —0.00001820 —0.00000815 —0.00000730 —0.00000360
0.4 1.0735 —0.00659825 —0.00006005 0.00002852 0.00001050 0.00000167
0.2 1.2184 —0.02308512 0.00023139 0.00044616 0.00032424 0.00014109
0.1 1.44 —0.06484964 —0.00117698 0.00031102 0.00022031 0.00008085
0.05 1.736 —0.14725855 —0.00645528 —0.00087101 —0.00052370 —0.00026977
0.025 2.055 —0.25494269 —0.01118927 0.00123175 0.00212553 0.00105995
0.01 2.63 —0.50094515 —0.04264187 —0.00480160 0.00128860 0.00114142
0.005 3.28 —0.81029898 —0.10351820 —0.02757797 —0.0194616 —0.00392626
Table 2

AQ”, AQ™ at various ¢ for m = 1/5

AQ" A ¢ AQ" AQ” ¢

—1.7921 —1.7921 0 —0.3721 —0.3719 47.25
—1.5457 —1.5460 2.25 —0.3351 —0.3350 49.5
—1.4366 —1.4366 4.5 —0.2999 —0.2998 51.75
—1.3482 —1.3479 6.75 —0.2665 —0.2665 54

—1.2699 —1.2694 9 —0.2349 —0.2350 56.25
—1.1980 —1.1975 11.25 —0.2052 —0.2053 58.5
—1.1304 —1.1300 13.5 —0.1774 —0.1775 60.75
—1.0661 —1.0659 15.75 —0.1515 —0.1516 63

—1.0045 —1.0045 18 —0.1276 —0.1277 65.25
—0.9453 —0.9455 20.25 —0.1057 —0.1058 67.5

—0.8881 —0.8884 22.5 —0.08580 —0.08583 69.75
—0.8328 —0.8332 24.75 —0.06792 —0.06792 72

—0.7794 —0.7798 27 —0.05210 —0.05207 74.25
—0.7276 —0.7279 29.25 —0.03834 —0.03830 76.5
—0.6775 —0.6777 31.5 —0.02664 —0.02662 78.75
—0.6290 —0.6291 33.75 —0.01709 —0.01705 81

—0.5821 —0.5821 36 —0.009621 —0.009659 83.25
—0.5368 —0.5367 38.25 —0.004279 —0.004265 85.5
—0.4932 —0.4930 40.5 —0.001070 —0.001066 87.75
—0.4511 —0.4509 42.75 0 0 90

—0.4108 —0.4105 45

Table 3

a,, a, and m|Q)| for different m

m 4/5 2/5 1/5 1/10 1/20 1/40 1/100 1/200
@ 0.5 0.50185 0.51015 0.58611 0.65515 0.72074 0.77256 0.81046 0.82970
a) 0.5 0.49810 0.46886 0.41015 0.33533 0.25950 0.19195 0.12538 0.09125
m|Q| 0.5 0.49809 0.46881 0.41013 0.33497 0.25840 0.19162 0.12482 0.08914
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Table 4

|Qamaz| and |Q| for different n = 1/m

n 1 1.5 2 3 5 10 20 30 50 100
|OAmazl 0.5 0.74061 0.96380 1.3674 2.0507 3.3497 5.16814 8.5420 12.359 39.825
|0] 0.5 0.74060 0.96381 1.3674 2.0507 3.3497 5.16816 6.5312 8.6536 12.482
Appendix D

Because summation terms containing cosine functions do not change sign at ¢ = 0 the convergence of
the summation can be very slow. This appendix describes summation tricks at ¢ =0 (and ¢ = ¢4) used
in the evaluation of #~ and Q ~ to solve this problem. It also discusses the summation trick used to obtain
0u/0¢ at small values of ¢.

At ¢ =0 (and ¢ = ¢ ) the potential 7; is equal to (see Eq. (45))

ﬁ>
E =14 (B —2)ar — ﬂoza2N+l (D.1)

Since ZN oazN+1 = 1 there is no need to evaluate 7; by summation in Eqgs. (45) and (D.1) at ¢ = 0. Note
too that since azNH, given by Eq. (48), decreases as 1/(2N+ 1)* the summation for @ iy at g =0and g =gy
converges rapidly. Thus #~ easily is evaluated accurately at ¢ = 0.

From Eq. (42) Q; is equal to (at ¢ =0 and ¢ =g,)

Q =a Aﬁoz W (2 ;2{cosN7t— 1}. (D.2)

The cos Nm term causes no problem in the summation because it alternates in sign. The term 1 does because
it does not alternate in sign. Let

f: i1+ Zzanbm{ L (_2;71];2 _ 1}, (D.3)

Note that Z;\,Zong =1 and, at large values of N, that
\/1 (1 —m)*/4m(2N)* — 1 ~ (1 — m)*/8m(2N)*. The second summation on the right-hand side of Eq.

(D.3) converges rapidly and the first summation has a known value. Thus Q; is easily evaluated at ¢
= 0. There are only five Q5 used in the paper. Thus Q" is accurately found at ¢ = 0.
One of the summation that causes problems in evaluating 0u/0¢ accurately (see Eq. (39)) is

iam %\/<1—%> +%(2N)2 sin(2N)¢. (D.4)

(The other troublesome summation is the one with cos(2N + 1)¢ terms in Eq. (40).) At large values of N

\/(1 —%)ZJF%(zN)Z — (V) + \/(1 —%>2+%(2N)2—%(2N)

(2N) +§ (1 _%)z/mv). (D.5)

SO
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Note that the summation Yy 5oy (2N) sin(2N)¢ can be found directly, without the need of a summation,
by differentiating # given by Eq. (15). Similarly, >~ _aonv+1(2N + 1) cos(2N + 1)¢ also is found by the same
differentiation.

References

Amazigo, J.C., 1974. Fully plastic crack in an infinite body under anti-plane shear. International Journal of Solids and Structures 10,
1003-1015.

Amazigo, J.C., 1975. Fully plastic center cracked strip C under anti-plane shear. International Journal of Solids and Structures 11,
1291-1299.

Atkinson, C., Champion, C.R., 1985. A boundary integral equation formulation for problems involving non-linear power-law
materials. IMA Journal of Applied Mathematics 35, 23-38.

Moon, P., Spencer, D.E., 1971. Field Theory Handbook Including Coordinate Systems, Differential Equations and their Solutions,
second ed. Springer-Verlag, Berlin.

Rice, J.R., 1968. Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (Ed.), Fracture, An Advanced Treatise, vol. I
Academic Press, New York, pp. 191-311.

Thomson, R., 1978. Brittle fracture in a ductile material with application to hydrogen embrittlement. Journal of Materials Science 13,
128-142.

Unger, D.J., 1995. Analytical Fracture Mechanics. Academic Press, San Diego, CA.

Weertman, J., 1978. Fracture mechanics: a unified view for Griffith-Irwin-Orowan cracks. Acta Metallurgica 26, 1731-1738.

Weertman, J., 1991. Crack tip plastic zone, dislocation crack tip shielding, and the dislocation crack extension force. In: Liaw, P.K.,
Marcus, H.L., Santner, J.S., Weertman, J.R. (Eds.), Morris E. Fine Symposium. Minerals, Metals & Materials Society of the
AIME, Warrendale, PA, pp. 339-347.

Weertman, J., 1996. Dislocation Based Fracture Mechanics. World Scientific Publishing Company, Singapore.

Weertman, J., 2000. Application of curvilinear coordinates to dislocation density fields around cracks in linear elastic—plastic solids.
Materials Science and Engineering. A Structural Materials, Properties, Microstructure and Processing 285A, 380-390, Erratum
2000, 293A, 297.

Weertman, J., 2001. Curvilinear coordinates for mode III crack plastic zone in work hardening solid. Materials Science and
Engineering. A Structural Materials, Properties, Microstructure and Processing 314A, 100-107.



	Mode III crack in power law hardening solid
	Introduction
	Stress (or strain) space
	Stress and strain potentials
	Elastic case solution

	Mode III crack solution in work hardening solid in stress space
	Stress space
	Stress space solution

	Stress magnitude contours in real space
	Stress component contours in real space
	Discussion
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References


